Role of replication and CpG methylation in fragile X syndrome CGG deletions in primate cells.

نویسندگان

  • Kerrie Nichol Edamura
  • Michelle R Leonard
  • Christopher E Pearson
چکیده

Instability of the fragile X CGG repeat involves both maternally derived expansions and deletions in the gametes of full-mutation males. It has also been suggested that the absence of aberrant CpG methylation may enhance repeat deletions through an unknown process. The effect of CGG tract length, DNA replication direction, location of replication initiation, and CpG methylation upon CGG stability were investigated using an SV40 primate replication system. Replication-dependant deletions with 53 CGG repeats were observed when replication was initiated proximal to the repeat, with CGG as the lagging-strand template. When we initiated replication further from the repeat, while maintaining CGG as the lagging-strand template or using CCG as the lagging-strand template, significant instability was not observed. CpG methylation of the unstable template stabilized the repeat, decreasing both the frequency and the magnitude of deletion events. Furthermore, CpG methylation slowed the efficiency of replication for all templates. Interestingly, replication forks displayed no evidence of a block at the CGG repeat tract, regardless of replication direction or CpG methylation status. Templates with 20 CGG repeats were stable under all circumstances. These results reveal that CGG deletions occur during replication and are sensitive to replication-fork dynamics, tract length, and CpG methylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene.

Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinu...

متن کامل

سندرم ایکس شکننده و گزارش 3 مورد (بررسی سیتوژنیک و ملکولی)

 ABSTRACT The fragile X syndrome is the most frequent cause of inherited mental retardation. The fragile site is on the long arm of X chromosome in X q27.3 region. Incidence of syndrome is 1 in 2000 in males and 1 in 2500 in females. This fragile site is visible only with using of special cultural technices. Since females have two X chromosomes, this signs apear less than males. The females who...

متن کامل

Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine.

In fragile X syndrome, hypermethylation of the expanded CGG repeat and of the upstream promoter leads to transcriptional silencing of the FMR1 gene. Absence of the FMR1 protein results in mental retardation. We previously proved that treatment with 5-azadeoxycytidine (5-azadC) of fragile X cell lines results in reactivation of the FMR1 gene. We now show that this treatment causes passive demeth...

متن کامل

Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression.

Fragile X syndrome is associated with a CGG repeat expansion in the 5'-untranslated region of the FMR-1 gene. Within the FMR-1 promoter a CpG island is frequently methylated in fragile X patients. To identify the effect of methylation on FMR-1 expression, we transfected methylated and unmethylated constructs containing the FMR-1 promoter in front of the CAT gene (pFXCAT) into COS-1 cells. No di...

متن کامل

Relationships between age and epi-genotype of the FMR1 exon 1/intron 1 boundary are consistent with non-random X-chromosome inactivation in FM individuals, with the selection for the unmethylated state being most significant between birth and puberty.

Methylation of the fragile X-related epigenetic element 2 (FREE2) located on the exon 1/intron 1 boundary of the FMR1 gene is related to FMRP expression and cognitive impairment in full mutation (FM; CGG>200) individuals. We examined the relationship between age, the size of the FMR1 CGG expansion and the methylation output ratio (MOR) at 12 CpG sites proximal to the exon 1/intron 1 boundary us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of human genetics

دوره 76 2  شماره 

صفحات  -

تاریخ انتشار 2005